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Abstract

A variety of a-(trimethylsilylmethyl)-substituted butyrolactones are readily accessed by a novel tandem
ene-reaction/oxidative desilylation of a range of aldehydes. Subsequent functionalisation led to an efficient
methodology for the preparation of exo-methylene butyrolactones. © 2000 Published by Elsevier Science
Ltd.
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Butyrolactones and exo-methylene lactones are widespread in a large variety of biologically
active natural products.1 Their occurrence coupled with their pharmacophoric activity has
spurred the development of numerous elegant procedures for their preparation.2 In this
communication, we wish to disclose some of our preliminary results in the establishment of a
concise and stereocontrolled methodology for the efficient assembly of these important subunits.

Recently, we have reported that the tandem ene-reaction/IntraMolecular Sakurai Cyclisation
(IMSC) of aldehydes 1 was a particularly efficient procedure for the preparation of a variety of
diastereomerically pure exo-methylene tetrahydropyrans 4 (Fig. 1).3

Figure 1.
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During the course of the total synthesis of amphidinol, we had the opportunity to examine the
ene-IMSC reaction of the model a-bromoaldehyde 5 with allylsilane 2 (Fig. 2).

Figure 2.

Whilst both the initial ene reaction and the subsequent IMSC cyclisation proceeded smoothly,
we were surprised to find that the ene adduct 6 was unstable to storage, even at 0°C, and
rearranged readily into the silylated lactol 7. This unexpected observation triggered our interest
and we surmised that a simple oxidation of adduct 7 should provide us with a novel and rapid
entry into the largely unexplored family of a-(trimethylsilylmethyl)-lactones.4 A plausible
rationale for the formation of 7 might involve the initial intramolecular cyclisation of a catalytic
amount of bromohydrin 6 into the corresponding trans-epoxide with concomitant production of
minute quantities of HBr. The in situ generated HBr could subsequently protonate the enol
ether portion of 6, affording an oxocarbenium ion, which would be rapidly and intramolecularly
intercepted by the incipient hydroxyl function, ultimately leading to the observed product 7.5

In order to widen the scope of this novel transformation, a series of ene adducts 3 were
prepared and submitted to a variety of acid-catalysed conditions. Unfortunately, either recov-
ered starting material or complete degradation of these homoallylic alcohols 3 was observed.

Gratifyingly, we found that treatment of the ene adducts 3 with TBAF (tetra n-butyl
ammonium fluoride), followed by the addition of catalytic amounts of TPAP (tetra n-propyl
ammonium perruthenate) and NMO (N-methyl morpholine-N-oxide)6 led to the desired a-
(trimethylsilylmethyl)-lactones 9 in good overall yields and in a single pot operation (Table 1).

These lactones are obtained as diastereomeric mixtures; their ratios depending upon the steric
bulk of the C5-substituent and varying from 45 to 70% d.e. in favour of the syn-isomer.

With rapid access to a-(trimethylsilylmethyl)-lactones in hands, we turned our attention to
their further transformation into the useful class of exo-methylene butyrolactones. In his
seminal contribution, Fleming has already reported such a protocol. Unfortunately, this
conversion proceeded only with modest overall yields.4 We were pleased to find that a one-pot
procedure, based upon the initial formation of the derived silylenol lactones of 9 followed by the
rapid addition of NBS and TBAF provided us with the desired exo-methylene lactones 10 in
excellent overall yield (Fig. 3).

In summary, we have uncovered a novel methodology for the efficient construction of
a-(trimethylsilylmethyl)-butyrolactones and their exo-methylene analogues7 based upon an
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Table 1
Oxidative lactonisation of ene adducts 3

Entry D.e. (%)R Yieldsa (%)

45n-C3H71 80
2 60 50c-C6H11

55t-C4H9 703

a All yields are for pure, isolated products.

Figure 3.

initial ene reaction between an aldehyde and the allylsilane reagent 2. Current efforts are now
being directed towards delineating the full scope of this connective methodology and defining an
enantioselective version. The results of these investigations will be reported in due course.
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Recherche Concertées (convention 96/01-197), the Fonds pour la Formation à la Recherche
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To a solution of ene adduct 3 (R=n-C3H7; 0.58 g; 1.75 mmol) dissolved in 10 mL of anhydrous THF is added
dropwise, at room temperature, 3.51 mL of a 1.0 M THF solution of TBAF (2 equiv.; 3.51 mmol). The resulting
pale-yellow solution is stirred at 20°C for 15 h. The reaction mixture is poured into a saturated NaCl solution. The
organic layer is separated and the aqueous phase is extracted three times with Et2O. The combined organic layers
are dried over MgSO4, filtered and the solvent is evaporated under reduced pressure. The crude product is
dissolved in 2 mL of CH2Cl2 and added dropwise to a suspension of 1.8 g of 4 A, MS in 3 mL CH2Cl2. NMO
(0.308 g; 1.5 equiv.; 2.63 mmol) is then added and the heterogeneous mixture cooled to 0°C before adding the
TPAP (20 mg; 0.06 mmol; 3%). The cooling bath is removed and the black suspension is stirred at room
temperature during 1 h. The crude reaction mixture is directly filtered through a pad of silica and the product
further purified by silica gel column chromatography (petroleum ether/EtOAc: 15/1) affording 304 mg (80%) of 9a
(R=n-C3H7, colourless oil) as a 2:1 diastereoisomeric mixture. To a cold (0°C) solution of diisopropyl amine
(0.174 mL; 1.1 equiv.; 1.05 mmol) in 6 mL of anhydrous THF is added dropwise 0.627 mL (1.05 equiv.; 1 mmol)
of a 1.6 M solution of n-BuLi in hexanes and the reaction mixture is stirred at 0°C for 30 min. The faint yellow
solution is then cooled at −78°C and 205 mg (1 equiv.; 0.96 mmol) of lactone 9a (R=n-C3H7) is added. The
reaction mixture is stirred at −78°C for 1 h then 0.212 mL (1.75 equiv.; 1.68 mmol) of TMSCl are added at once.
After stirring for another 5 h at −78°C, 274 mg (1 equiv.; 0.96 mmol) of NBS is added followed, after 1 min, by
1.15 mL (1.2 equiv.) of a 1 M solution of TBAF in THF. After 1 min, the crude reaction mixture is poured onto
a saturated solution of NaHCO3/NaCl and extracted three times with Et2O. The organic layers are dried over
MgSO4 and the solvent removed in vacuo. The crude product is purified by silica gel column chromatography
(Petroleum ether/EtOAc: 13/1) affording 107 mg (80%) of 10a as a colourless oil. 1H NMR (CDCl3, 300 MHz) d :
6.20 (t, J=2.8 Hz, 1H), 5.61 (t, J=2.7 Hz, 1H), 4.56–4.47 (m, 1H), 3.0 (ddt, J1=17 Hz, J2=7.6 Hz, J3=2.5 Hz,
1H), 2.56 (ddt, J1=17 Hz, J2=5.9 Hz, J3=2.8 Hz, 1H), 1.48–1.33 (m, 4H), 0.95 (t, J=7.2 Hz, 3H). 13C NMR
(CDCl3, 50 MHz) d : 170.2, 134.86, 121.67, 77.23, 38.36, 33.60, 18.18, 13.72. IR (Film) nmax: 2961, 1765, 1666, 1187
cm−1. MS (EI) 141 (M+), 97, 68, 43. This compound has been reported earlier: Adlington, R. M.; Barrett, A. G.
M. J. Chem. Soc., Perkin Trans 1 1981, 11, 2848.
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